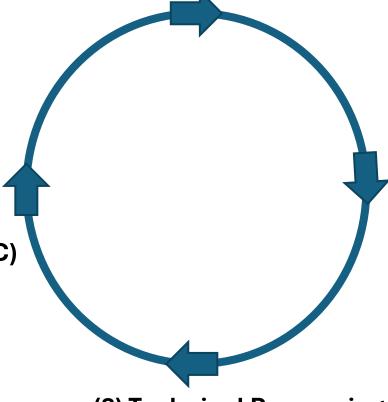


Core Facility Genomics (CFG)

Location Vumc, RDC, ZH 2 J 055 and 057

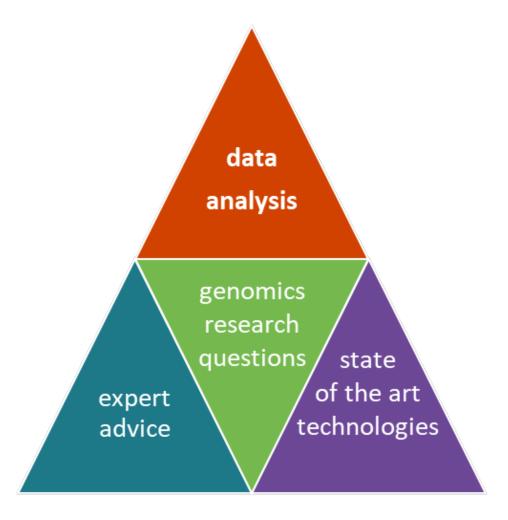
Location AMC, G2-105.3

24th Core Facility Genomics (CFG) user webinar, Tuesday 30th September 15:00-15:45


Typical CFG Workflow (1) Intake

- Research questions / experiment design
- Planning / costs
- Data analysis

- Data transfer
- Data Archiving
- Data analysis (HPC)


(2) Registration, sample delivery

- User and experiment (type) registration
- Sample delivery

The Core Facility Genomics, leverage the quality of your research data, on time and cost effective.

Consultancy team CFG



Scientific and technical consultants 4 lead technicians 17 technicians (partially part-time) 1 support staff Bion-inf team

Start

Core Facility Genomics (CFG)

CFG CONTACT

email - cfg@amsterdamumc.nl
website - https://cfg.amsterdamumc.nl

Location Vumc, RDC, ZH 2 J 055 and 057 CFG lab: 06 46126777

Location AMC, G2-105.3 CFG lab: 06 22297916

Topics

- > CFG locations, user registration and CFG equipment
- DNA/RNA isolation
- Next Gen Sequencing Platforms
- Single cell/spatial
- Amsterdam UMC Core Facilities

CFG locations

RDC			
Pre-PCR lab	ZH2J055		
Post-PCR lab	ZH2J057		
Offices	ZH2J078a		

AMC			
Pre-PCR lab	K2-252		
Post-PCR lab	G2-105.3		
Offices	K2-218		

CFG user Registration

- Before use of labs, equipment and services
- Central registration in CFG LIMS
 - activate badge access
 - enable direct communication for CFG
 - access to equipment reservation system in CFG LIMS
 - billing of costs if applicable
 - o communication of CFG house rules

House rules CFG lab

House rules of CFG can be found in K2 and via CFG website: <u>CFG - Huisregels voor gebruikers</u>

(and are sent in email after registration).

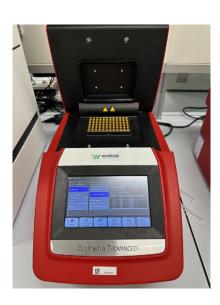
- Pre- and post-lab areas are separated. No post-PCR materials in the pre-lab area.
- UV cabinets have dedicated pipettes for additional compartmentalization and clean working.
- A CFG employee is available for questions between 8:30 and 17:00; due to the large building, you can call 06 46126777 if necessary.
- Lab coat is mandatory.
- One glove policy according to AmsterdamUMC policy.
 Do not touch pipettes, computers, doors, etc. with a gloved hand.

House rules CFG lab

Always leave the lab in a better
House rules as thouse rules as the lab in a better and it.

House rules as the lab in a better about the lab in a better as the lab in a better as the lab in a better as the lab in a better about the lab in a better as the lab in a better as the lab in a better about the lab in a better about the lab in a better as the lab in a better about the lab in House rules of CFG can be found in K2 and via CFG website: CFG - Huisregels voor

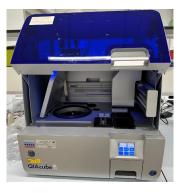
- Pre- and post-lab areas are separated. No post-PCR materials in the pre-lab area.
- UV cabinets have dedicated pipettes for additional compartmentalization and clean working.
- A CFG employee is available for questions between 8:30 and 17:00; due to the large building, you can call 06 46126777 if necessary.
- Lab coat is mandatory.
- One glove policy according to AmsterdamUMC policy. Do not touch pipettes, computers, doors, etc. with a gloved hand.

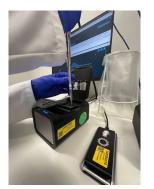

- Equipment provenance
 - Equipment used at the Human Genetics
 - Equipment acquired by the CFG
 - Equipment from other labs

- Equipment usage types
 - Free open use
 - Paid use (maintenance, purchase and / or running costs)
 - Use by CFG only. (paid services)

- Machines for general use:
 - Nanodrop
 - Thermocylers 96 en 384 well
 - Qiaxcell (RDC)
 - 2d Tube readers
 - Centrifuges
 - Plate sealers
 - Tissue lyser (AMC)
 - Magna lyser (AMC)

- Machines for general use:
 - Plate readers
 - Tecan (RDC)
 - Spectramax (RDC)
 - Fluorstar omega and optima (AMC)
 - o **Imagers**
 - Las4000 (AMC, fluorescence and chemiluminescence)
 - Uvitec for fluorescence (NIR/IR) and chemiluminescence (ECL ed.) western blots (RDC)
 - Auto blot and image system WES (AMC)




- Machines for paid use:
 - Qubit
 - o ddPCR
 - 10x Single Cell
 - o Blue Pippin
 - Qiacube
 - o LC480
 - Covaris
 - Nanopore sequencing

- Use by CFG only:
 - Tapestation
 - o ABI 3730xl
 - Biomek FXp robotics
 - Hamilton Star robotics
 - Illumina sequencers
 - Qiagen DNA / RNA isolators
 - Autogen DNA isolator
 - Promega DNA / RNA isolators
 - Speedvac
 - Thermofisher array platform
 - Megaruptor

Additional info / services

- Automation of laboratory process (pipetting robots)
- Bulk purchase of chemistry and kits
- AVG complient outsourcing
 - GSA / EPIC array
 - PACBIO long read sequencing
 - Femtopulse

See our website for full list of current services

cfg.amsterdamumc.nl

DNA and RNA isolation

- 1. Intake
- 2. Registration (LIMS)
- 3. Isolation (Devices)
- 4. DNA release verification (criteria)
- 5. Test, sending, storage (@biobank AUMC)

DNA/RNA isolation, source materials

- EDTA Blood (fresh/frozen) DNA
- PAX blood (RNA)
- Buffy coat
- Saliva (oragene)
- Blood spot ("heel prick")
- Cell-free fetal DNA
- Tissue (chorion villi, skin biopsy etc)
- Urine
- FFPE (paraffin)
- ???

Qiasymphony (2x)

DNA and RNA extraction by Magnetic beads

- 1-96 samples/run (200/day)
- Fast
- Fully automated
- Max. 2ml blood as source (DNA)
- RNA possible
- DNA ready to use

Autogen flex+

DNA extraction by precipitation

- 30 samples/run (90/day)
- Slow
- Fully automated
- Default 5 ml blood as source (max 10 ml)
- DNA should be dissolved (o/n)

Maxwell (3x)

DNA and RNA extraction by Magnetic beads

- 1-16 samples/run
- Semi-automated
- Low input
- DNA ready to use
- RNA possible

DNA/RNA release verification

- OD measurement (standard for DNA)
- Qubit measurement (optional for DNA, standard for RNA)
- Tapestation (optional for DNA, standard for RNA)
- Criteria DNA
- >30µg (from 1,8 ml blood)
- OD260/280 1,6 -2.0

- --> DNA back to applicant
- --> DNA for inhouse testing, sending
- --> storage at <u>AmsterdamUMC biobank</u>

DNA Storage 4°C / RNA storage -80°C (2D barcode tubes)

Next Gen Sequencing Platforms

- iSeq100
- NextSeq2000
- NovaSeqXplus
- Minlon
- P2 solo
- REVIO

<u>Illumina</u>

- short reads
- clonal amplification

<u>PacBio</u>

- long reads
- single molecule

Oxford Nanopore

- long reads
- single molecule

NovaSeqXplus

Illumina Next Gen Sequencing

NextSeq2000

1.2

iSeq100

Companies 1 de la

120/300

8000

Gb

4 M

200M/1,8B

26B

SE reads

Price / b

Oxford Nanopore

	flongle	MinION	PromethION 2
channels per flow cell	126	512	2675
number flow cell per divice	1	1	2
max output per flow cell	2,8 Gb	50 Gb	290 Gb
max output per device	2,8 Gb	50 Gb	580 Gb
run time	1 min -16 h	1 min -72 h	1 min -72 h

REVIO - PacBio

- SMRT cell 8M
- 8 million ZMWs
- 4.000.000 reads
- 30uur

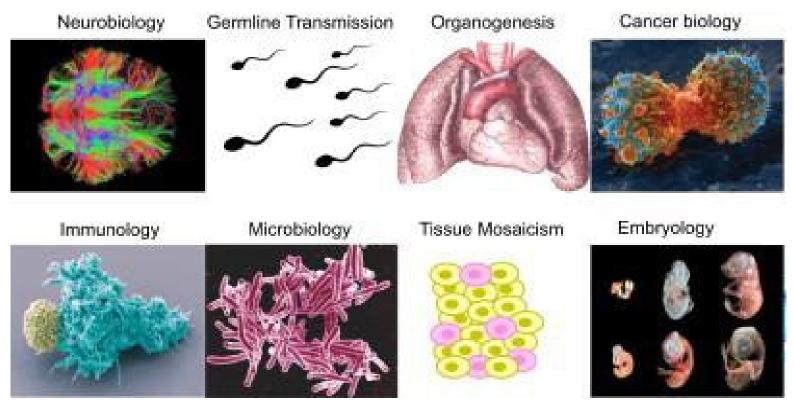
Samenwerking RadboudUMC

Differences

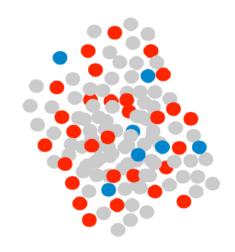
Single strand

- No amplification, no PCR bias
- No copying errors
- Long reads
- Structural variants
- Modifications stay intact
- Very low signal

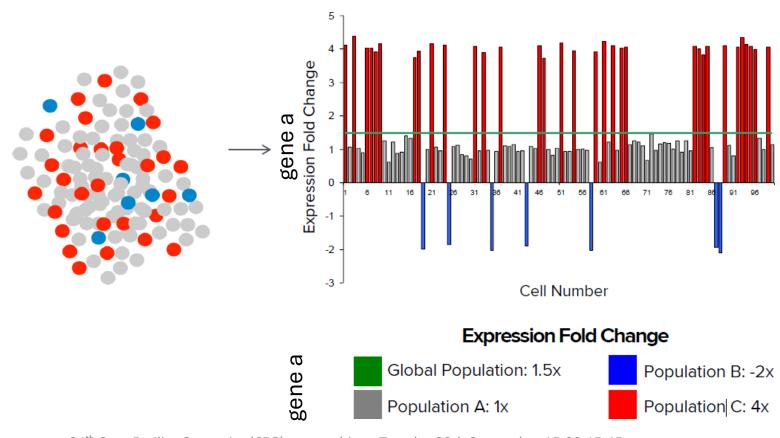
Clonal Amplification


- Strong signals
- PCR errors are averaged Short reads
- Loose modifications
- High throughput

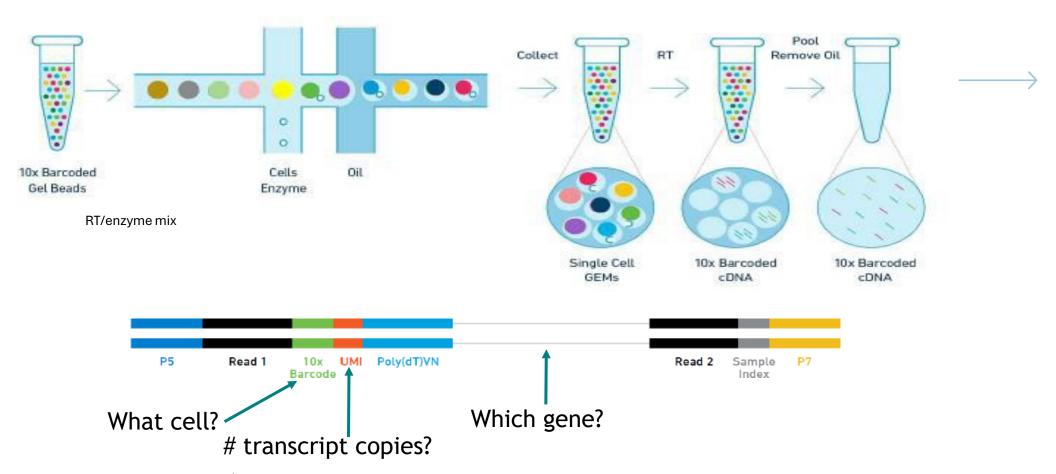
PCR bias/errors


Single cell

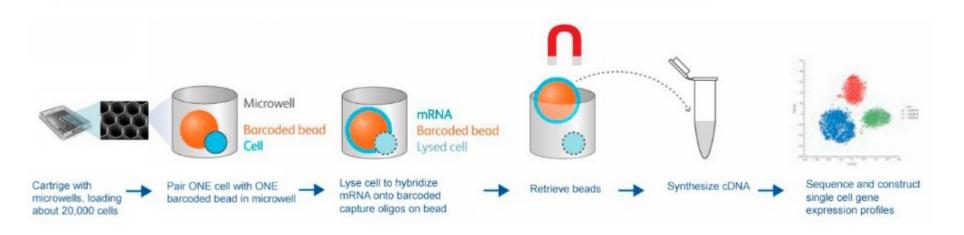
Single cell biology impacts most areas of research



Individual cells behave differently from the average of many cells

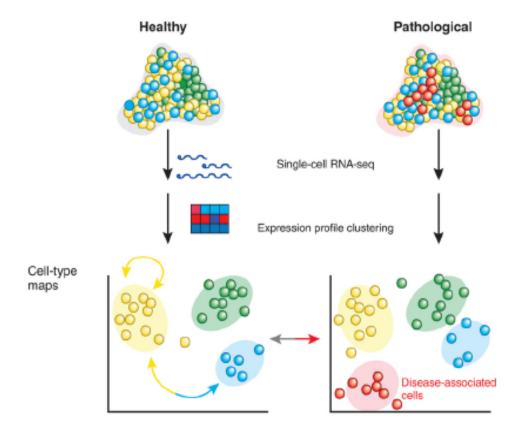


Individual cells behave differently from the average of many cells


10X Microfluidics droplet encapsulation

24th Core Facility Genomics (CFG) user webinar, Tuesday 30th September 15:00-15:45

BD Rhapsody protocol


Single Cell data analysis

Top differentially expressed genes per cell cluster
(UMI counts/cell)

Tissues

Gene name	Cluster 1	Cluster 2	Cluster 3
Abc1	28.52	0.03	14.7
Xyz2	4.56	8.33	30.85
Fgh3	8.94	17.44	1.27

Which cells and how many per type are present? What are they expressing?

Types of analyses

Within cell type

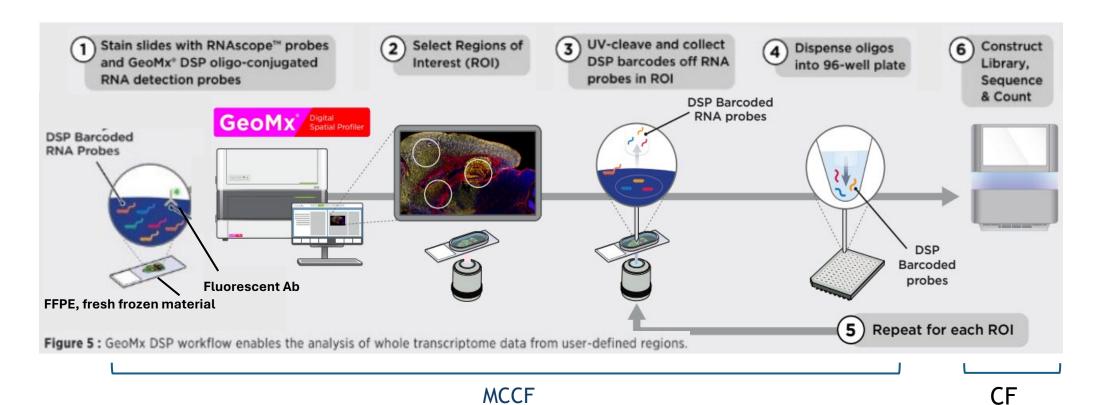
- · Stochasticity, variability of transcription
- Regulatory network inference
- Allelic expression patterns
- Scaling laws of transcription

Between cell types

- Identify biomarkers
- (Post)-transcriptional differences

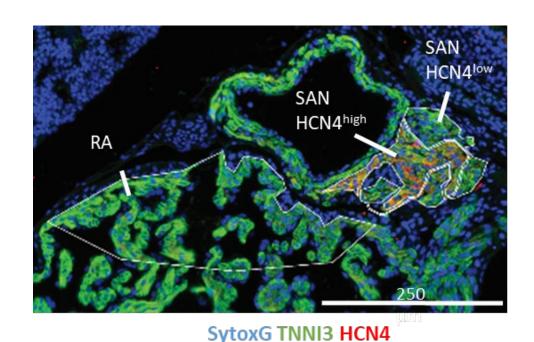
- Between tissues
- Cell-type compositions
 - Altered transcription in matched cell types

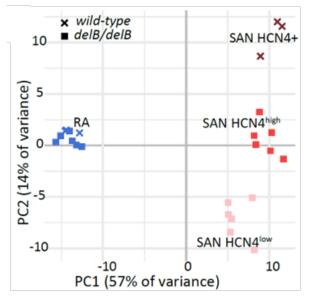
Figure from R. Sandberg, Nature Methods 11:22 (2014)

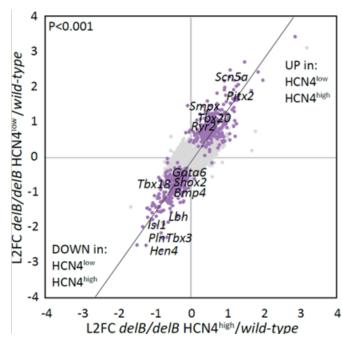


		10	10X Genomics		BD Rhapsody	
WTA, poly-A capture	singleplex	J		J		
	multiplex	√ (HT-Ab or OCM)	Live cells, nuclei, fixed PBMC's	√ (HT Ab)	Live cells, nuclei, fixed PBMC's	
Targeted RNA	singleplex	J	Fixed cells or nuclei,	J	Targeted Probe	
	multiplex	J	WTA BC Probe Panel*	J	Panel on cDNA*	
V(D)J		√ (BCR and/or TCR)*		√ (BCR and/or TCR)*		
ATAC			\int		J	
CITEseq			\int		\int	
Multiome WTA & ATAC			\int		\int	

^{*}Human & Mice


Spatial Transcriptomics GeoMX DSP Nanostring, a targeted approach




24th Core Facility Genomics (CFG) user webinar, Tuesday 30th September 15:00-15:45

Example results Spatial Transcriptomics

GeoMX DSP image

Result after coupling the Illumina seq data to the ROIs

L. van de Maarel,; NanoString GeoMx DSP; Mouse Whole Transcriptome Atlas (22 k transcripts)

Amsterdam UMC Core Facilities

Core Facility	Microscopy & Cytometry CF	Proteomics	Genomics	Metabolomics	Microscopy & Flow Cytometry CF
Acronym	MCCF-VUMC	ProCoRe	CFG	CFM	MCCF-AMC
Director	Juan J. Garcia Vallejo	Connie Jimenez	Alex Postma	Fred Vaz	Eric Reits
	High Pe	·	iting and Research		t Hub (ACDC)
Embedding	Molecular Cell Biology & Immunology	Medical Oncology	Human Genetics	Clinical Chemistry	Medical Biology
Location	Multiple buildings (O2, RDC , SWT) (VUMC Location)	RDC Building (VUMC Location)	RDC Building (VUMC Location)	F0 (AMC Location)	L3-M3 (AMC Location)

MCCF-VUMC

Central hub + 3 satellites Strong collaboration with VU 12 operators, 36 instruments >500 users, >70000 h/year

Industry
alliances
ThermoFisher
SCIENTIFIC
CYTEK

Powerhouse

FOCUS

Throughput

Multiplexity

(Functional) imaging

Cellular heterogenity (blood/tissue)

Experimental Set Up

- Choosing the right technique
- Panel design and optimization
- Existing panels (via ITC)

Data Acquisition

- Training 1:1
- Operator assisted
- Troubleshooting

Data Analysis

- Bioinformatics support
- Established pipelines
- Commercial packages

Community

- Educational activities
- Focus technology groups
- Connecting projects

Imaging Flow Analysis

Attune CytPix

ML2 Sorting

BD Melody

Biomarker assays

MESO QuickPlex SQ120MM

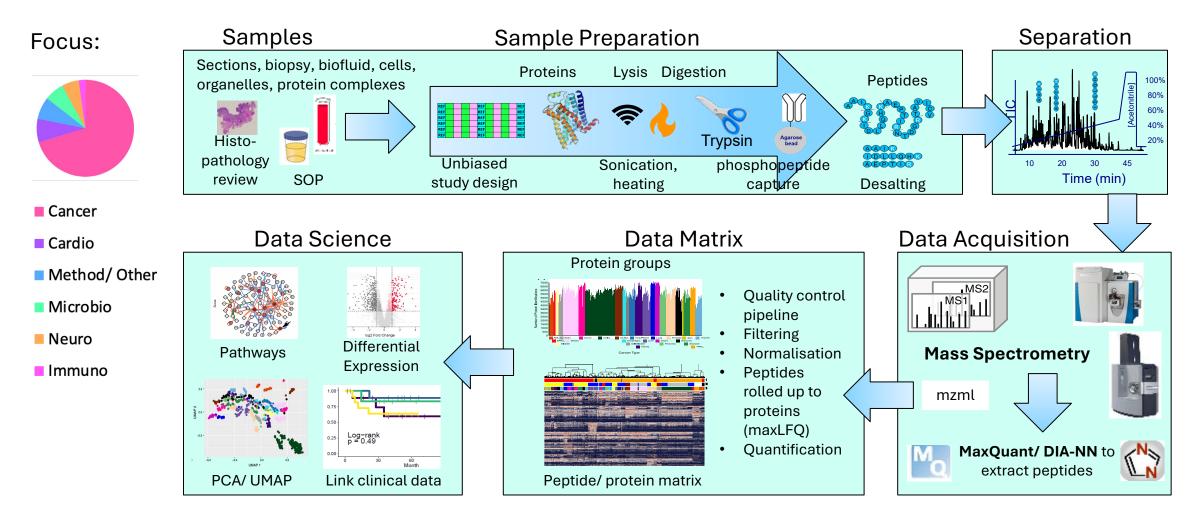
Upright IF

Leica DM6000

Live Cell IF/BF

ECHO CellCyte X

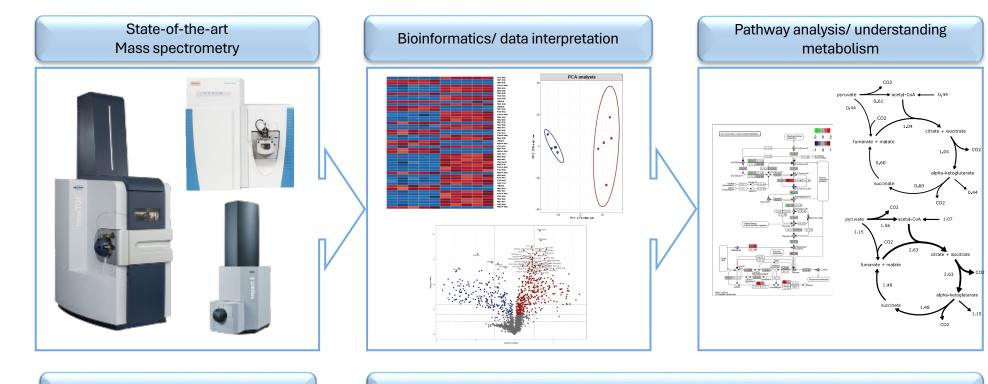
Live cell CLSM


Nikon A1R

High-content screening

CellInsight HCS

Proteomics Core Resource Multi-disciplinary core team: 5 PhD level scientists Infra: 3 MS platforms; Users from 16 AUMC depts


Input: Biological/ clinical samples; Support: wet lab, full service MS and dry lab

Output: User-friendly excel file with data QC, dedicated statistics, heat maps; Turn-around time: ~4-6 weeks; Fair data management; Annual course; >200 ProCoRe publications in PubMed

Core Facility Metabolomics 逝

- Metabolomics
- Lipidomics
- Fluxomics
- Targeted assays

- Help with:
 - experimental design
 - data analysis
 - interpretation
 - data visualization

>20.000 features

Including:

- Untargeted analysis
- Targeted analysis
- >1800 annotated

>2500 lipid species

Phospholipids

Triglycerides

Spingolipids

d species >300 polar metabolites

Including:

- O Glycolysis, TCA cycle
- O PPP, Nucleotides
- O Amino acids

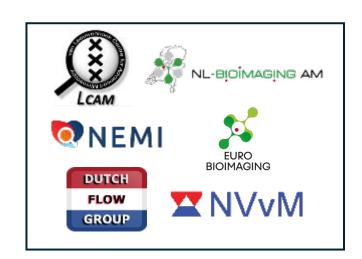
www.cfmetabolomics.nl www.nextli.org

MCCF - AMC

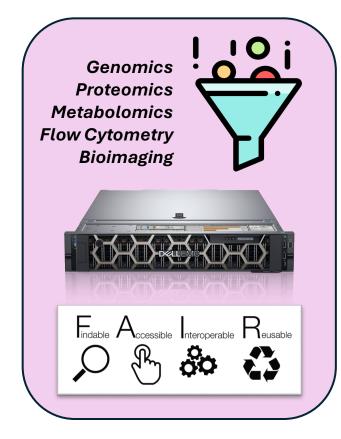
fluorescence microscopy facility:

- 3 operators, 2 data analists (via NL-BioImaging), expertise center Leica
- embedded in Leeuwenhoek Center Amsterdam Microscopy center (LCAM) with NKI and UvA,
 leading NWO Roadmap NL-BioImaging and coordinating Dutch microscopy in Euro-BioImaging

Electron Microscopy Center Amsterdam (EMCA):


- Nicole van der Wel + 3 operators
- embedded in GWI Roadmap Netherlands EM initiative
- EM facility for AmsterdamUMC, NIN, Sanquin, NKI and ACTA

Flow cytometry:


Kim Brandwijk + 2 operators, expertise center Sony

- UvA master track coordination Cell Biology & Advanced Microscopy
- 3 Doctor School courses on microscopy and data analysis
- Over 500 active users including biotech in 2024
- Current developments focus on visual omics to combine microscopy and omics core facilities
- Coordinating workgroups and demonstrations in the Dutch Microscopy Society
- Headed by Eric Reits

Advanced Compute & Data Core

An integrated approach to multi-omics and bioimaging data & compute

Community
Driven

<u>Compute</u> <u>Infrastructure</u> <u>Data</u> Infrastructure

Quality

Multidepartment collaboration

Enabling AI

Metadata Standards

Compliant

Network of experts & Community

Centralized
High Performance
Compute

Data Management

Sustainabl

Discover the Core Facility Genomics with a lab tour

Contact

Cfg@amsterdamumc.nl

Intake to discuss project, experimental design, possibilities, alternatives costs.

Website

cfg.amsterdamumc.nl

Pricelist

CFG: Cost and cost examples

Protocols

Extern via WebShare in CFG website

Intern via K2 https://amsterdamumc.iprova.nl/

CFG User meetings

<u>Previous CFG User Meetings</u> To subscribe for future meetings, please email <u>Cfg@amsterdamumc.nl</u>

Newsletters

Newsletters Core Facility Genomics To subscribe, please email CFG@amsterdamumc.nl