Cancer Immunology, Infectious Diseases

CD169 defines activated CD14⁺ monocytes with enhanced CD8⁺ T cell activation capacity

¹Affandi AJ, ¹Olesek K, ²Saris A, ^{1,3}Zwart ES, ⁴Nossent EJ, ⁵de Gruijl TD, ¹Garcia Vallejo JJ, ¹van Kooyk Y, ¹den Haan JMM

¹Dept. of Molecular Cell Biology and Immunology, ²Center for Experimental and Molecular Medicine, ³Dept. of Surgery, ⁴Department of Pulmonary Medicine.⁵Department of Medical Oncology

Monocytes are antigen-presenting cells (APCs) that play diverse roles in promoting or regulating inflammatory responses, but their role in T cell stimulation is not well defined. In inflammatory conditions, monocytes frequently show increased expression of CD169/Siglec-1, a type-I interferon (IFN-I)-regulated protein. However, little is known about the phenotype and function of these CD169⁺ monocytes. Here, we investigated the phenotype of human CD169⁺ monocytes in different diseases, their capacity to activate CD8⁺ T cells, and the potential for a targeted-vaccination approach. Using spectral flow cytometry, we detected CD169 expression by CD14⁺ CD16⁻ classical and CD14⁺ CD16⁺ intermediate monocytes, and unbiased high-dimensional analysis showed that they were distinct from dendritic cells, including the recently described CD14-expressing DC3. CD169⁺ monocytes expressed higher expression of costimulatory- and HLA-molecules, suggesting an increased activation state. IFNa treatment highly upregulated CD169 expression on CD14⁺ monocytes and boosted their capacity to cross-present antigen to CD8⁺ T cells. Furthermore, scRNA-seq and flow cytometry analyses showed that CD169⁺ monocytes were present in the blood and bronchoalveolar lavage fluid of COVID-19 patients, and in the blood of patients with five different types of cancers. Finally, we evaluated two CD169-targeting nanovaccine platforms, antibody- or liposome-based, and we showed that CD169⁺ monocytes efficiently presented tumor-associated peptides gp100 and WT1 to antigen-specific CD8⁺ T cells. In conclusion, our data indicate that CD169⁺ monocytes are activated monocytes with enhanced CD8⁺ T cell stimulatory capacity and that they emerge as an interesting target in nanovaccine strategies, because of their presence in health and different diseases.